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Abstract

Human body reconstruction primarily relies on single RGB
images as the data source, but their 2D nature limits depth ac-
curacy. Point cloud-based reconstruction provides depth and
normals but often results in sparse, dissimilar meshes. We
propose a novel approach using multi-modal data (images and
point clouds) for human reconstruction.Our method involves
three steps: 1) feature extraction from images and point
clouds to generate a parameterized human model (SMPL), 2)
designing a loss function to predict precise human body nor-
mals from images and the SMPL, and 3) using IF-NET++
to bridge normal prediction gaps and achieve a complete
mesh reconstruction.Our multi-modal human reconstruction
overcomes single-modal limitations, supported by quantita-
tive and qualitative experiments demonstrating its effective-
ness.

Introduction
Highly realistic virtual humans are poised to play a pivotal
role in augmented and mixed reality, forming a crucial foun-
dation for the concept of the ”metaverse.” This advancement
promises to support remote presentations, collaborations,
education, and entertainment. To achieve this, new tools are
needed to effortlessly create and animate 3D virtual charac-
ters. Traditionally, this has required substantial artistic effort
and expensive scanning equipment.

Current approaches to human body reconstruction fall
into three primary categories: explicit reconstruction based
on parameter models like SMPL (Loper et al. 2023), im-
plicit reconstruction based on models like distance fields
and occupancy fields, and more recent NeRF-based meth-
odsp (Mildenhall et al. 2021; ?) for human body reconstruc-
tion. However, most of these methods rely on single-modal
data sources, such as images, stereo images, or RGBD im-
ages, resulting in sparse and imprecise information. Recent
advancements in LiDAR technology have led to the acqui-
sition of increasingly dense point cloud data, offering more
accurate depth and normal information. This has opened the
door to the fusion of point cloud data with image data for im-
proved human body reconstruction, yielding more accurate
results.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Visualizations were conducted on the SLPOER4D
dataset, where the generated Meshes were augmented with
global trajectories and projected back into the scene maps.

While methods like PIFu(HD) (Saito et al. 2019, 2020)
can reconstruct 3D human figures in attire with uncon-
strained topological structure, they often overfit to the poses
seen in training data and lack explicit knowledge of human
body structure, leading to unrealistic limb shapes. Explicit
body models can be used to regularize implicit models, but
this introduces topological constraints, limiting their abil-
ity to generalize to novel clothing styles and compromising
shape detail.

To address these challenges, we propose a multi-modal
human body reconstruction method that combines image
and point cloud data. Leveraging state-of-the-art frame-
works, we integrate our point cloud data into image stream
processing. Specifically, we utilize the accurate depth and
normal information from the point cloud to provide more
precise SMPL parameter estimation, overcoming depth un-
certainty in SMPL parameter estimation from images. Fur-
thermore, our point cloud data includes information about
both the human body and clothing, enabling our implicit
model to provide more comprehensive depth information for
both the human body and its attire, beyond the prior infor-
mation from SMPL parameters.

Our method comprises three primary steps: First, we ex-
tract features from images and point clouds to generate a
parameterized human model (SMPL). Second, we design a
loss function to accurately predict human normals from im-
ages and SMPL parameters. Finally, we employ IF-NET++
to bridge the gap between predicted normals and achieve



a complete mesh reconstruction. Our multi-modal human
body reconstruction overcomes the limitations of single-
modal data, as demonstrated through both quantitative and
qualitative experiments.

Related work
Clothed Human Reconstruction from Images. In the do-
main of computer vision and computer graphics, image-
based clothed human reconstruction has garnered significant
attention due to its applications in areas like virtual try-on,
character animation, and digital fashion. This research area
aims to create 3D models of clothed humans directly from
2D images or image sequences, allowing for realistic and
dynamic representation of human subjects in various outfits.
The following sections will delve into three key categories of
related work in image-based clothed human reconstruction,
providing an overview of the different methodologies and
approaches that have been developed to address this chal-
lenging problem.

Approaches Based on Explicit 3D Shape Modeling. In
the field of 3D human reconstruction, diverse methodolo-
gies have been employed. Explicit-shape-based techniques
utilize either a mesh-based parametric body model (Joo, Si-
mon, and Sheikh 2018; Loper et al. 2023; Romero, Tzionas,
and Black 2022) or nonparametric representations like depth
maps (Gabeur et al. 2019) or point clouds (Zakharkin et al.
2021) for the creation of 3D human models. Many ap-
proaches focus on the estimation or regression of 3D body
meshes from RGB images while neglecting clothing details
(Feng et al. 2021; Kocabas et al. 2021; Sun et al. 2022;
Zhang et al. 2023, 2021). To account for the complexities
of clothed human forms, another line of research introduces
3D offsets on top of the body mesh (Pons-Moll et al. 2017).
This approach seamlessly integrates with existing animation
pipelines, as it inherits the hierarchical skeleton and skin-
ning weights from underlying statistical body models. How-
ever, the ”body+offset” approach falls short in adequately
modeling loose clothing, such as dresses and skirts, which
significantly deviate from the body’s topology. In an effort
to enhance topological flexibility, some methods reconstruct
3D clothed humans by recognizing the type of clothing and
employing the appropriate models for reconstruction (Jiang
et al. 2020). However, scaling up this ”cloth-aware” ap-
proach to accommodate a wide range of clothing styles is a
nontrivial task, limiting its applicability to handling diverse
outfit variations encountered in real-world scenarios.

Approaches Based on Variations in Implicit-function.
Implicit-function-based techniques provide a versatile ap-
proach for representing diverse 3D clothed human shapes.
Methods like SMPLicit (Corona et al. 2021), and DIG (Li
et al. 2022) employ neural distance fields to create genera-
tive clothing models from 3D clothing datasets. When given
an image, these methods reconstruct clothed humans by esti-
mating a parametric body and optimizing the latent space of
the clothing model. However, results often suffer from mis-
alignment with the image and lack of geometric detail. PIFu
(Saito et al. 2019) introduces pixel-aligned implicit human
shape reconstruction, while PIFuHD (Saito et al. 2020) en-
hances geometric detail with a multi-level architecture and

normal maps from RGB images. These methods do not uti-
lize human body structure knowledge, leading to overfitting
to specific body poses in training data, limiting their general-
ization to new poses. To address these issues, some methods
introduce geometric priors for regularization. GeoPIFu (He
et al. 2020) models a coarse shape of volumetric humans,
and PINA (Dong et al. 2022), and S3 (Yang et al. 2021) use
depth or LIDAR information to improve shape regularity.
Another approach combines parametric body models with
implicit representations for the best of both worlds. PaMIR
(Zheng et al. 2021), ARCH (Huang et al. 2020), ARCH++
(Huang et al. 2020) use SMPL or 3DMM to enhance their
reconstructions.

Approaches Based on NeRF for Human Reconstruc-
tion. NeRF (Neural Radiance Fields) (Mildenhall et al.
2021) has been a source of inspiration for research in 3D hu-
man reconstruction. Human NeRF techniques have emerged
to generate high-quality views and poses of 3D humans us-
ing multi-view or monocular human videos. For instance,
Neural Body (?) applies sparse convolutions to model radi-
ance volumes. Meanwhile, other approaches model human
NeRF in canonical spaces (?Su et al. 2021) using SMPL
(Skinned Multi-Person Linear) body model weights or op-
timizing these weights with appearance information. While
these methods yield impressive results, they often require
extensive computation and dense observations, making them
less efficient. To overcome this challenge, there is a grow-
ing interest in developing generalizable human NeRF tech-
niques (Zhao et al. 2022; Kwon et al. 2021). These meth-
ods reduce the need for extensive observations and achieve
reconstruction with a single forward pass. This work aims
to contribute to the advancement of generalizable human
NeRF, focusing on a more complex task: recovering animat-
able human NeRF from a single image.

Method
Normal Reconstruction by RGB and Point cloud
Point Cloud Feature Embedding. For point cloud feature
extraction, we employ the well-established PointNet++ ar-
chitecture. Diverging from conventional approaches that in-
volve voxelization of point clouds followed by the applica-
tion of standard neural networks, PointNet++ directly pro-
cesses raw 3D point clouds. This characteristic makes it par-
ticularly advantageous for preserving the inherent spatial in-
formation of the point cloud.

PointNet++ operates without the need for voxelization,
accepting raw point cloud data as input, where each point
is represented by its spatial coordinates and additional fea-
tures. The network employs a hierarchical architecture with
multiple set abstraction (SA) and feature propagation (FP)
layers. The SA layers hierarchically extract features at dif-
ferent scales, allowing the model to capture both fine and
coarse details in the point cloud. The sampling mechanism
is employed to downsample points, and a grouping opera-
tion aggregates features within local regions. This enables
the model to efficiently capture local structures. Through it-
erative feature aggregation, the network synthesizes global
and local information, ensuring that the resulting feature rep-



resentation is comprehensive and informative.
The utilization of PointNet++ proves instrumental in ex-

tracting rich and discriminative features from the raw point
cloud. This feature richness is crucial for generating high-
quality normal maps in subsequent stages of our reconstruc-
tion pipeline.

ResNet-based Fusion for Normal Map Generation. In
our reconstruction pipeline, we incorporate ResNet-based
fusion to synergize RGB image and point cloud data. Ini-
tially, RGB images undergo down-sampling to extract high-
dimensional features, which are fused with PointNet++-
extracted point cloud features. These fused features are
processed through ResNet, known for its residual learning
framework that effectively handles deep networks.

ResNet captures intricate patterns and hierarchical fea-
tures, making it well-suited for our task. Post-ResNet pro-
cessing involves up-sampling and activation to generate a
higher resolution representation. The final normal map is
derived from these processed features, detailing the surface
orientations of the reconstructed 3D model.

This ResNet-based fusion strategy plays a pivotal role in
integrating multi-modal information, enhancing normal map
quality, and benefiting from ResNet’s advantages in han-
dling complex patterns within our reconstruction approach,
see Figure 2.

Figure 2: The diagram illustrates our network architec-
ture for normal map generation. The inputs include point
cloud data, RGB images, and the predicted SMPL model.
These modalities undergo a feature fusion process, combin-
ing point cloud features extracted by PointNet++ with down-
sampled features from RGB images. The fused features are
then processed through a ResNet network, resulting in the
generation of the corresponding normal map.

Rough mesh reconstruction of human body
In our research, we adopted a methodology similar to (Xiu
et al. 2023) for rough mesh reconstruction of human body.
Three key aspects ensured: first, high-frequency surface de-
tails are aligned with the predicted clothed normal maps;
second, low-frequency surface variances are consistent with
those from the SMPL-X model; and third, the depth profiles
of the front and back silhouettes are closely matched.

This approach use neural networks to deduce implicit
surfaces from normal maps, explicitly modeled the depth-
normal relationship through variational normal integration
methods (Cao et al. 2022; Quéau, Durou, and Aujol 2018).
The recent bilateral normal integration (BiNI) method (Cao
et al. 2022) was customized for full-body mesh reconstruc-
tion, incorporating a coarse prior, depth maps, and silhouette
consistency.

A depth-aware silhouette-consistent bilateral normal inte-
gration (d-BiNI) method (Xiu et al. 2023) to fulfill these con-
ditions. This approach jointly optimizes the front and back
clothed depth maps, significantly improving the accuracy of
the depth mapping.

Objective function includes several components:
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B

Ln(Ẑ
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the BiNI loss term Ln, a depth prior Ld for front and back
depth surfaces, and a silhouette consistency term Ls. The
depth prior
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derived from the SMPL-X body mesh, helps align the front
and back surfaces coherently, addressing the challenge of
unifying these surfaces into a complete body structure. The
silhouette consistency term:
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c
B) = |Ẑc

F − Ẑc
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is particularly crucial in maintaining the physical integrity
of the reconstructed depth maps, preventing undesirable ar-
tifacts and improving overall reconstruction quality.

By integrating these components, this methodology
makes significant technical advancements beyond the ba-
sic BiNI approach (Cao et al. 2022), particularly in terms
of depth accuracy and surface coherence.

Poisson mesh reconstruction
We drew upon the methodology described in (Xiu et al.
2023), particularly when dealing with complex poses that re-
sult in self-occlusions. For simple poses, the straightforward
fusion of d-BiNI surfaces suffices, as previously demon-
strated by FACSIMILE (Smith et al. 2019) and Moduling
Humans(Gabeur et al. 2019). However, this approach is in-
sufficient for poses with self-occlusion, which leave large
portions of the surface incomplete and prone to the creation
of blobby artifacts when applying Poisson Surface Recon-
struction (PSR)(Kazhdan, Bolitho, and Hoppe 2006).

To address this, we employed a two-pronged strategy, first
introducing an approach we termed ECONEX. This tech-
nique builds upon PSR (Kazhdan, Bolitho, and Hoppe 2006)
by incorporating the estimated SMPL-X body model to infill
missing surfaces. While ECONEX effectively avoids miss-
ing limbs, it does not fully resolve issues of surface coher-
ence for clothing and hair, due to the inherent differences
between the SMPL-X model and actual garments or hair.



Figure 3: The figure demonstrates the optimization process
of depth and normal maps through the d-BiNI method, el-
evating them into 3D space (depicted as half of the mesh).
Subsequently, the front and back meshes, along with the pre-
dicted SMPL input, are fed into IF-Net+ to obtain the final
mesh result.

We further refined our reconstruction by implementing
inpainting with an improved implicit-function model, IF-
Nets+ (Chibane, Alldieck, and Pons-Moll 2020), which en-
hances the generic shape completion capabilities of IF-
Nets(Chibane, Alldieck, and Pons-Moll 2020). IF-Nets+ is
adapted to the SMPL-X model to accommodate variations
in pose, trained on voxelized depth maps and body meshes,
and supervised with ground-truth 3D shapes. This training
process includes random masking of depth maps to increase
the model’s robustness to occlusions. For inference, we in-
put the estimated depth maps and body mesh into IF-Nets+
to produce an occupancy field, which we then convert into
the inpainted mesh RIF via the Marching cubes(We 1987) .

Our final mesh, denoted as ECONIF, results from the
PSR-based integration of d-BiNI surfaces, side-view and oc-
cluded regions from RIF , and, when necessary, elements
from the SMPL-X body mesh to rectify poorly reconstructed
areas like hands or face. Although RIF alone yields a com-
plete human mesh, it tends to smooth out finer details.
Hence, in our process, only the side-views and occluded
parts of RIF are fused in the Poisson step to better pre-
serve the detail captured by d-BiNI. This nuanced approach,
which aligns with the strategy delineated in (Xiu et al. 2023),
ensures the preservation of high-fidelity details in our final
reconstructed models, as evidenced by our evaluation met-
rics. Our pipiline is listed in Figure 3.

Experiments
Datasets
Typically, to obtain three-dimensional point cloud data of
the human body, it is necessary to use a laser radar to scan
the target body from multiple angles. The point cloud results
obtained from scans at different angles are then stitched to-
gether to generate the final three-dimensional point cloud
data. The dataset used in this experiment comes from THu-
man2.0, where the three-dimensional human body data is

stored in mesh files. As we cannot directly convert mesh-
format files into point cloud format, we need to simulate the
laser radar scanning process on the mesh data from THu-
man2.0 to obtain the desired point cloud files. For this sim-
ulation, we selected the OS1 high-definition imaging radar
from OUSTER. In terms of implementation, we drew in-
spiration from the principles of ray tracing. Using the hu-
man body mesh data as the origin, we simulated the rotation
of the laser radar around the horizontal plane of the human
body mesh data to obtain point cloud data at different angles.

Training on Thuman2.0. We conducted tests on
the Thuman2.0 dataset, specifically selecting 525 high-
quality three-dimensional human texture scans. Each high-
resolution scan was divided into 36 viewpoints at 10-degree
intervals. Additionally, corresponding SMPL-X and point
cloud data were generated based on images. Both PIFUHD
and PaMIR were retrained on this training set.

Evaluation on CAPE. We conducted tests on the CAPE
human dataset. Specifically, we employed a similar process-
ing method as the training set, capturing viewpoints every
120 degrees. Corresponding SMPL-X and point cloud data
were generated and utilized in the inference process.

Metrics
Chamfer and P2S distance. We evaluate the commonly
used Chamfer and P2S distance between ground-truth and
reconstructed meshes to capture large geometric errors, for
instance, occluded parts or wrongly positioned limbs.

L2. For a more detailed evaluation of the reconstructed
meshes, particularly concerning the precision of local sur-
face details and the consistency of projections from the in-
put image, we report the L2 norm of the normal differences.
This involves rendering normal images from both the recon-
structed and ground-truth surfaces and calculating the L2 er-
ror. We perform this assessment by rotating a virtual camera
around the meshes at intervals of 0°, 90°, 180°, 270° relative
to a frontal view.

Evaluation
Quantitative evaluation. We compared our method with
body-agnostic approaches such as PIFuHD (Saito et al.
2020) and body-aware methods like PaMIR (Zheng et al.
2021). To ensure a fair comparison, we re-implemented PI-
FuHD and PaMIR. As shown in Table 1, the optimiza-
tion method based on SMPL-X achieved the best perfor-
mance across the three metrics. The regression-based IF-
Net+ method outperforms PaMIR and PIFuHD in terms of
chamfer and P2S metrics. Additionally, it surpasses PIFuHD
in the Normal metric but is inferior to PaMIR. See Figure 4.

Qualitative evaluation. For a more intuitive comparison
with PIFuHD and PaMIR, we selected challenging datasets,
including instances with challenging poses and loose cloth-
ing. Notably, for datasets with loose clothing, both PIFuHD
and PaMIR exhibit limitations in accurately capturing high-
frequency details. Additionally, in challenging pose scenar-
ios, PIFuHD experiences instances of failure.

Additionally, to validate the effectiveness of our method
on in-the-wild datasets, we conducted tests on the



Figure 4: We visualized several result sets, including scenarios with loose clothing, challenging poses, and normal poses. From
top to bottom, the order is PIFuHD, PaMIR, and Our Method. The images display the frontal mesh results on the left and the
dorsal mesh results on the right.

Table 1: *Method indicates the re-implemented approach,
EX subscript signifies the utilization of optimization meth-
ods, IF denotes the application of regression methods, and
”OOD” represents “out-of-distribution.

OOD poses(CAPE)Methods Chamfer↓ P2S↓ Normals↓
PaMIR* 1.023 1.133 0.0422
PIFuHD 3.767 3.591 0.0994
OursIF 1.134 1.122 0.0457
OursEX 1.066 1.083 0.0413

SLPOER4D dataset. Meshes were generated based on im-
ages and point clouds, and leveraging the provided global
body trajectories in the dataset, the Meshes were registered
to the scenes, resulting in the effects shown in Figure 1.

Ablation study. In the ablation study conducted in the
second part of our pipeline, we introduced point clouds to
supplement depth information in the presence of the origi-
nal SMPL human depth priors. A qualitative analysis reveals
that, compared to scenarios where only human depth pri-
ors are utilized, the reconstruction of clothing in conjunction
with the human body is significantly more accurate. Quanti-
tative analysis results are provided in Table 2.

Table 2: The first row corresponds to scenarios without the
inclusion of point cloud depth information, while the second
row represents scenarios incorporating point cloud depth in-
formation.

Methods OOD pose(CAPE)
Chamfer↓ P2S↓ Normals↓

w/o pc depth 1.123 1.258 0.0622
w/ pc depth 1.066 1.083 0.0413

Conclusion
In summary, we have proposed a multi-modal data fusion
framework for human mesh reconstruction. Leveraging the

characteristics of point cloud data and the semantic richness
of image data, our framework adeptly restores comprehen-
sive human body surfaces. Relative to single-modal meth-
ods, we harness the distinctive features of point cloud data,
establishing a robust coupling relationship between the re-
construction of human and clothing surfaces. This coupling
facilitates a well-resolved depth ambiguity, addressing the
challenges of multiple interpretations inherent in the depth
data. Notably, our framework has been successfully tested
in in-the-wild scenarios, showcasing commendable recon-
struction results. This capability holds promise for providing
richer annotation data in large-scale multi-modal datasets.
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